

OCR Computer Science A Level

2.1.2 Thinking Ahead
Concise Notes

www.pmt.education

Specification:

2.1.2 a)

● Identify the inputs and outputs for a given situation.

2.1.2 b)
● Determine the preconditions for devising a solution to a problem.

2.1.2 c)

● The nature, benefits and drawbacks of caching

2.1.2 d)

● The need for reusable program components

www.pmt.education

Inputs and Outputs

● Designing a solution requires thinking ahead about how the different components of
a problem can be handled in the best possible way.

● By thinking ahead, developers can build programs that are easy and intuitive to use .
● All computational problems consist of inputs which are processed to produce an

output.
○ Inputs include any data required to solve the problem.

■ These are entered into the system by the user.
○ Outputs are the results that are passed back.

■ Outputs are produced once inputs have been processed.
■ Outputs are essentially the solution to the problem

● You should be able to evaluate the methods using which this data is captured, or
relayed back to the user once processed.

○ Consider data structures and data types involved.
○ Consider input and output devices.

● Designers begin by considering the outputs based on the user’s requirements.
● This is used to identify the inputs required and how these need to be processed to

achieve these outputs.

Preconditions

● Requirements which must be met before a program can be executed .
○ Can be tested for within the code or included in the documentation

accompanying a particular subroutine, library or program.
● Specifying preconditions means that a subroutine expects the arguments passed to

it to meet certain criteria.
● Including preconditions within documentation reduces the length and complexity of

the program and saves time spent on debugging and maintenance.
● Preconditions make subroutines more reusable.

Reusable Program Components

● Commonly used functions can be packaged into libraries for reuse.
● Teams might create a library of components so they can be reused throughout a

project. Reusable components include:
○ Abstract data structures eg. queues and stacks
○ Classes
○ Subroutines eg. functions and procedures

www.pmt.education

● Problem decomposition is used to identify where previously-developed program
components can be reused.

● Reusable components are more reliable than newly-coded components, as they
have already been tested.

● They save time, money and resources.
● Components may need to be modified to be compatible with existing software.
● This can be more costly and time-consuming than developing them from scratch.

A Level only

Caching

● Storing instructions or values in cache memory after they have been used, as they
may be used again.

● Saves time of retrieving instructions from secondary storage again.
Frequently-accessed web pages are cached so content can be quickly loaded

● This frees up bandwidth for other tasks on a network.
● Prefetching is when algorithms predict which instructions are likely to soon be

fetched and are loaded and stored in cache.
● Thinking ahead means less time is spent waiting for instructions to be fetched.
● Limited by accuracy of algorithms used, as data stored in cache is not always used.
● Effectiveness depends on caching algorithm’s ability to manage the cache:
● Larger caches take a long time to search, but smaller cache sizes limit how much

data can be stored.
● Can be difficult to implement well.

www.pmt.education

